An invasion-associated Salmonella protein modulates the actin-bundling activity of plastin.
نویسندگان
چکیده
The entry of Salmonella typhimurium into nonphagocytic cells requires a panel of bacterial effector proteins that are delivered to the host cell via a type III secretion system. These proteins modulate host-cell signal-transduction pathways and the actin cytoskeleton to induce membrane ruffling and bacterial internalization. One of these bacterial effectors, termed SipA, is an actin-binding protein that is required for efficient Salmonella entry into host cells. We report here that SipA forms a complex with T-plastin on bacterial infection. Formation of such a complex, which requires the presence of F-actin, results in a marked increase in the actin-bundling activity of T-plastin. We also report that T-plastin is recruited to S. typhimurium-induced membrane ruffles by a CDC42-dependent signaling process and is required for bacterial entry. We propose that modulation of the actin-bundling activity of T-plastin by SipA results in the stabilization of the actin filaments at the point of bacterial-host cell contact, which leads to more efficient Salmonella internalization.
منابع مشابه
The Calcium-Dependent Switch Helix of L-Plastin Regulates Actin Bundling
L-plastin is a calcium-regulated actin-bundling protein that is expressed in cells of hematopoietic origin and in most metastatic cancer cells. These cell types are mobile and require the constant remodeling of their actin cytoskeleton, where L-plastin bundles filamentous actin. The calcium-dependent regulation of the actin-bundling activity of L-plastin is not well understood. We have used NMR...
متن کاملDirect nucleation and bundling of actin by the SipC protein of invasive Salmonella.
Salmonella causes severe gastroenteritis in humans, entering non-phagocytic cells to initiate intracellular replication. Bacterial engulfment occurs by macropinocytosis, which is dependent upon nucleation of host cell actin polymerization and condensation ('bundling') of actin filaments into cables. This is stimulated by contact-induced delivery of an array of bacterial effector proteins, inclu...
متن کاملQuantitative Kinetic Study of the Actin-Bundling Protein L-Plastin and of Its Impact on Actin Turn-Over
BACKGROUND Initially detected in leukocytes and cancer cells derived from solid tissues, L-plastin/fimbrin belongs to a large family of actin crosslinkers and is considered as a marker for many cancers. Phosphorylation of L-plastin on residue Ser5 increases its F-actin binding activity and is required for L-plastin-mediated cell invasion. METHODOLOGY/PRINCIPAL FINDINGS To study the kinetics o...
متن کاملPhosphorylation on Ser5 increases the F-actin-binding activity of L-plastin and promotes its targeting to sites of actin assembly in cells.
L-plastin, a malignant transformation-associated protein, is a member of a large family of actin filament cross-linkers. Here, we analysed how phosphorylation of L-plastin on Ser5 of the headpiece domain regulates its intracellular distribution and its interaction with F-actin in transfected cells and in in vitro assays. Phosphorylated wild-type L-plastin localised to the actin cytoskeleton in ...
متن کاملCytoskeletal rearrangements and the functional role of T-plastin during entry of Shigella flexneri into HeLa cells
Shigella flexneri is an enteroinvasive bacterium which causes bacillary dysentery in humans. A major feature of its pathogenic potential is the capacity to invade epithelial cells. Shigella entry into epithelial cells is considered a parasite-induced internalization process requiring polymerization of actin. Here we describe the cytoskeletal rearrangements during S. flexneri invasion of HeLa ce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 96 18 شماره
صفحات -
تاریخ انتشار 1999